



Asegun Henry, MIT

Team Members: Evelyn Wang, MIT; Myles Steiner, NREL;

Dan Friedman, NREL

#### **Project Vision**

We're storing energy thermally to achieve low cost, while also storing the energy at extremely high temperature to enable low cost conversion using photovoltaics.

DAYS
Annual Meeting
March 1 & 2, 2021

| Total project cost:          | \$1.5M   |
|------------------------------|----------|
| Current Q / Total Project Qs | Q8 / Q12 |

#### The Concept

#### Electricity → Heat → Electricity



Water Cooled MPV with Integrated Mirror





#### The Team

MIT:: Heat & Mass Transport and Storage



A. Henry



C. Kelsall



E. Wang



A. LaPotin



M. Pishahang



K. Buznistky

NREL:: Photon Conversion and Power Extraction



M. Steiner



K. Schulte



D. Friedman



R. France



### **Project Objectives**



#### |1| MPV Performance



#### |2| MPV Cooling

#### |3| MPV Reliability



## **MPV Cell Efficiency**



Compositionally Graded Buffer (CGB) Layer Transitions Lattice Parameter Removed to Minimize Sub-Band Gap Absorption

K. L. Schulte et al., Journal of Applied Physics 128, 143103 (2020)



#### **MPV Cells Efficiency**

- Back reflectance measured ~ 92%
- Peak cell efficiency ~40% (predicted)
- Limited by series resistance (high current)
- More optimization of series resistance
- Thinning and reduction of highly doped layers



K. L. Schulte et al., Journal of Applied Physics 128, 143103 (2020)





CHANGING WHAT'S POSSIBLE











Can control  $\Delta T_{water}$  from 0.5°C <  $\Delta T_{water}$  < 20°C by varying flow rate  $\rightarrow$  We can keep the cells cool!









Control Side Natural Convection Testing Side SNGC To Prevent Frosting







# Comparison of deposition rates for graphite and tungsten emitters





#### Challenges, Risks and Potential Partnerships

- Challenges
  - Heating Element Arcing (Solved)
  - Carbon Deposition
  - Wire Bonding
  - Cell Reflectivity
- Looking to collaborate with cell manufacturers
  - Need more cells
  - Need cell interconnects
- Can offer expertise on high temperature materials
- Can offer expertise on high temperature systems





#### **Technology-to-Market**





#### Cost Estimate



With other system costs added < \$10/kWh





#### **Summary Slide**

- Low cost < \$10/kWh</p>
- Efficiency target ~ 50%
- Current efficiency estimate 30-40%
- Demonstrated ability to keep the cells cool
- Demonstrated SNGC via proxy (H<sub>2</sub>O)
- Next steps
  - Calorimetric efficiency measurement
  - Mechanical cell connection
  - Solve carbon deposition
  - Demonstrate SNGC in 2150C cavity









https://arpa-e.energy.gov



# Backup Slides





https://arpa-e.energy.gov



















#### **Model Predictions**





## Challenges, Risks and Potential Partnerships

- Challenges
  - Heating Element Arcing (Solved)
  - Carbon Deposition
  - Wire Bonding
  - Cell Reflectivity
- Looking to collaborate with cell manufacturers
  - Need more cells
  - Need cell interconnects
- Can offer expertise on high temperature materials
- Can offer expertise on high temperature systems





